Local Hölder regularity of minimizers for nonlocal variational problems
نویسندگان
چکیده
We study the regularity of solutions to a nonlocal variational problem, which is related image denoising model, and we show that, in two dimensions, minimizers have same Hölder as original image. More precisely, if datum (locally) [Formula: see text]-Hölder continuous for some text], where text] parameter operator, prove that solution also continuous.
منابع مشابه
Interior gradient regularity for BV minimizers of singular variational problems
We consider a class of vectorial integrals with linear growth, where, as a key feature, some degenerate/singular behavior is allowed. For generalized minimizers of these integrals in BV, we establish interior gradient regularity and — as a consequence — uniqueness up to constants. In particular, these results apply, for 1 < p < 2, to the singular model integrals ∫ Ω (1 + |∇w(x)|) 1 p dx . MSC (...
متن کاملHölder Stable Minimizers, Tilt Stability, and Hölder metric Regularity of Subdifferentials
Using techniques of variational analysis and dual techniques for smooth conjugate functions, for a local minimizer of a proper lower semicontinuous function f on a Banach space, p ∈ (0, +∞) and q = 1+p p , we prove that the following two properties are always equivalent: (i) x̄ is a stable q-order minimizer of f and (ii) x̄ is a tilt-stable p-order minimizer of f . We also consider their relation...
متن کاملLipschitz regularity for constrained local minimizers of convex variational integrals with a wide range of anisotropy
We establish interior gradient bounds for functions u ∈ W 1 1,loc (Ω) which locally minimize the variational integral J[u, Ω] = ∫ Ω h (|∇u|) dx under the side condition u ≥ Ψ a.e. on Ω with obstacle Ψ being locally Lipschitz. Here h denotes a rather general N-function allowing (p, q)-ellipticity with arbitrary exponents 1 < p ≤ q < ∞. Our arguments are based on ideas developed in [BFM] combined...
متن کاملA simple partial regularity proof for minimizers of variational integrals
We consider multi-dimensional variational integrals F [u] := Ω f (·, u, Du) dx where the integrand f is a strictly convex function of its last argument. We give an elementary proof for the partial C 1,α-regularity of minimizers of F. Our approach is based on the method of A-harmonic approximation, avoids the use of Gehring's lemma, and establishes partial regularity with the optimal Hölder expo...
متن کاملA Regularity Theory for Scalar Local Minimizers of Splitting-Type Variational Integrals
Starting from Giaquinta’s counterexample [Gi] we introduce the class of splitting functionals being of (p, q)-growth with exponents p ≤ q < ∞ and show for the scalar case that locally bounded local minimizers are of class C. Note that to our knowledge the only C-results without imposing a relation between p and q concern the case of two independent variables as it is outlined in Marcellini’s pa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Contemporary Mathematics
سال: 2022
ISSN: ['0219-1997', '1793-6683']
DOI: https://doi.org/10.1142/s0219199722500584